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Abstract

This manuscript introduces an existing enhanced approach to Shannon’s method for comput-
ing degree-based entropies, integrating both additive and multiplicative degree-based topolog-
ical indices. It also assesses the physicochemical correlation capacity of the melamine cyanuric
acid molecular structure, addressing implications for physicochemical and biological realms.
Graph theoritical computational techniques were applied to investigate the interaction between
melamine and cyanuric acid, revealing diverse binding configurations and emphasizing the im-
portance of structural diversity in these complexes. The study represents the melamine cya-
nuric acid structure using three chemical graphs and establishes a hydrogen-bonded biomolec-
ular network. From the comparison between multiplicative and additive degree based entropy
measures the bond additive descriptors showed superior predictive performance for entropies,
prompting further analysis on their correlation with entropy measures using linear regression
models. Significant relationships between bond additive degree-based descriptors and entropy
measures were observed, demonstrating potential for predictive modeling in physicochemical
contexts.
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1 Introduction

According to the literature review on supramolecular structures, a discussion on coordina-
tion motivated self-assemblies of molecular frameworks has enabled the development of vari-
ous supramolecular architectures and structures, from straightforward two-dimensional macro-
cycles to massive, intricate three-dimensional cages [7, 11]. Molecular recognition and the cre-
ation of high-order assemblies by non-covalent interactions are the main topics of supramolecular
chemistry, also referred to as chemistry beyond the molecule. As a result of this, supramolecular
chemistry became a well-known chemistry discipline. Since supramolecular systems are made
up of non-covalent interactions, they bind together as building blocks[14]. Molecular interac-
tions, which include a variety of favorable and repulsive connections including hydrogen bond-
ing and metal-ligand interactions, are significant in supramolecular chemistry [23]. In addition,
the study explores the variety of molecular interaction, including dendrimer [15], metal-organic
framework [16], Corona product, Aluminophosphates [27], chain of diphenylene [20], silicate
carbide, nanocones and network. These investigations advance our knowledge of the features and
attributes of various substances and materials of interactions. Melamine, a versatile organic base,
starts its part as urea. Through a two-step process, urea transforms first into cyanuric acid, then
condenses with ammonia to become melamine. Interestingly, this reaction also produces byprod-
ucts like cyanuric acid, ammeline, and ammelide. Remarkably, melamine packs a powerful punch
in its tiny form, boasting a whopping 66 percent nitrogen by weight. Melamine has been used in
a variety of commercial products such as countertops, dry erase boards, fabrics, and flame retar-
dants. Melamine has been used in fertilisers since 1958, and it is occasionally used as a nonprotein
nitrogenous source in cow feed. However, because of its slow hydrolysis in ruminants, it was later
discovered to be an ineffective nonprotein nitrogen source for animals [13].

For over 60 years, a combination of chemicals has been used in pools to fight the sun’s weak-
ening effect on chlorine. This combo, including hypochlorous acid, chlorine, and cyanuric acid
derivatives, keeps the disinfectant chlorine active longer, reducing both disinfection failures and
the need for constant re-dosing. Additionally, pre-made disinfectants containing cyanuric acid
derivatives are readily available. These chemicals and their manufacturing methods are well-
understood and established [4, 8]. Upon ingestion, melamine undergoes metabolic breakdown
within the body, converting into cyanuric acid, a process that may result in the formation of solid
crystals known as MCA melamine-cyanuric acid co-crystals within the kidneys. These crystals
have the potential to inflict damage on renal tissue, leading to organ failure. The public’s con-
cern regarding the toxicity of melamine has heightened in response to several incidents where
unscrupulous suppliers adulterated products like wheat or baby milk with melamine to falsely
elevate the protein content [25, 29]. Recent reports from various developing countries have fur-
ther underscored the prevalence of such deceptive practices [12]. Notably, the crystal morphology
of melamine-cyanuric acid differs between samples produced in vitro and those formed in vivo
[17, 26]. Melamine, melamine cyanuric acid, and their derivatives find extensive use as flame re-
tardants due to their unique property of releasing nitrogen gas when exposed to heat or flames.
In this investigation, we evaluate the entropy values based on degree for three distinct types of
MCA growths, providing valuable insights for readers interested in this domain.
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1.1 About the molecular arrangements of MCA

(a) Compound Melamine. (b) Compound Cyanuric
Acid.

(c) Connected section Melamine Cyanuric Acid.

Figure 1: The molecular arrangements ofMCA.

A singleMCAmolecule forms a crystalline structure, comprising a finite arrangement of atoms
bondedvia hydrogen bonds. This structure arises froma 1:1 stoichiometric combination ofmelamine
(M) and cyanuric acid (CA). To aid in visualization, both atoms and hydrogen bonds can be de-
picted as vertices and edges in a graph. Notably, theMCA compound exhibits regular hexagonal
rings containing either six (C6) or eight (C8) atoms along its structure, as shown in Figure 1(c)
illustrating the initial dimension arrangement. The linear configuration of MCA is denoted as
MCA linear tape (MCA.LTn), as depicted in Figure 2. Moreover, the hexagonal Cyclic Rosette
Structure (CRS) of MCA, as per [17], is represented as the linear chain CRS (MCA.LCn), with
MCA.LC4 illustrated in Figure 3. Similarly, the triangular CRS system is defined asMCA.Tn, with
MCA.Tn shown in Figure 4. Melamine cyanuric acid is a complex formed by the reaction between
melamine and cyanuric acid. Melamine is a nitrogen-rich compound with the molecular formula
C3H6N6, while cyanuric acid has the formula C3H3N3O3. When these two compounds react,
they form a hydrogen-bonded network known as melamine cyanuric acid complex or melamine
cyanurate.

Themolecular structure ofmelamine cyanuric acid complex involvesmultiple hydrogen bonds
between melamine and cyanuric acid molecules. Melamine contains three amine groups (-NH2)
and three triazine rings, while cyanuric acid contains three carboxylic acid groups (-COOH) and
three triazine rings. In the complex structure, the amine groups ofmelamine formhydrogen bonds
with the carboxylic acid groups of cyanuric acid. The specific arrangement of these molecules
results in a network-like structure that can be visualized as a repeating pattern of melamine and
cyanuric acid units connected through hydrogen bonds. This structure is significant because it
plays a role in the stability and properties of the complex. Melamine cyanuric acid complexes
have garnered attention due to their involvement in food safety issues. There have been concerns
about their potential formation in food products, particularly when melamine is illegally added
to food or animal feed to increase apparent protein content. The formation of these complexes
can lead to health risks, such as kidney damage, especially in cases of high exposure. Melamine
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cyanuric acid (MCA) has been a subject of computational studies due to its relevance in materials
science, chemistry, and biology. Here are some key points about computational studies related to
MCA:

• Structural Analysis: Computational methods like molecular dynamics simulations and den-
sity functional theory (DFT) calculations have been used to study the structural properties
of MCA. These techniques help in understanding the arrangement of molecules, intermolec-
ular interactions, and stability of MCA crystals.

• Energetics and Stability: Computational studies can provide insights into the energetics of
MCA, including the calculation of binding energies between melamine and cyanuric acid
molecules. These calculations help in predicting the stability of MCA complexes and their
potential applications in various fields.

• Phase Transitions: Computational modeling can simulate phase transitions in MCA under
different conditions such as temperature and pressure. This is important for understanding
the thermodynamic behavior of MCA and its phase diagrams.

• Mechanical Properties: Molecular dynamics simulations can be used to investigate the me-
chanical properties ofMCA crystals, such as elastic moduli, hardness, and fracture behavior.
These properties are crucial for evaluating the suitability of MCA in structural applications.

• Electronic Structure: DFT calculations can elucidate the electronic structure ofMCA, includ-
ing band structures, density of states, and electronic properties. This information is valuable
for understanding the optical, electronic, and magnetic properties of MCA-based materials.

• Adsorption and Catalysis: Computational studies have explored the adsorption properties
of MCA for various molecules and pollutants, as well as its catalytic activity in chemical
reactions. This has implications for environmental remediation and catalysis research.

• Biological Interactions: In the context of biology, computational methods can simulate the
interactions of MCA with biomolecules like proteins and nucleic acids. These studies con-
tribute to understanding the potential biomedical applications of MCA and its derivatives.

• Design of MCA-basedMaterials: By combining computational predictions with experimen-
tal synthesis, researchers can design novel materials based onMCAwith tailored properties
for specific applications such as sensors, drug delivery systems, and nanocomposites.

Overall, computational studies play a crucial role in unraveling the fundamental properties
and potential applications of melamine cyanuric acid, contributing to advancements in materials
science, chemistry, and related disciplines [5].

Analyzing the molecular structure of melamine cyanuric acid complexes is crucial for under-
standing their behavior, properties, and potential health implications. As our contribution, we
have utilized a graph theoretical (topological characterization) method to figure out the molec-
ular invariants. In recent years, there has been a surge in the application of these novel chem-
ical compounds, driven by advancements in "topological indices." These indices serve as potent
tools for predicting the physicochemical characteristics of diverse compounds, fostering significant
breakthroughs [6]. Quantitative structure-property relations (QSPR) and quantitative structure-
activity relations (QSAR) represent two prominent applications of topological indices [9, 28]. Due
to their structural invariance with respect to molecular graphs and their ability to capture molec-
ular network interconnections, these indices have garnered considerable attention in recent years,
particularly in the context of QSPR andQSAR studies [2, 3]. The integration of topological indices
with entropy measures holds immense promise for advancing QSPR and QSAR investigations.
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Recent research indicates a direct correlation between entropy data and the physical properties
of various chemical families, including oxidation states of carbon atoms and rotational symmetry
numbers. Motivated by this correlation, we are currently engaged in computing the topological
indices and their associated entropymeasures for the melamine cyanuric acid (MCA) compound,
aiming to uncover its potential future applications [10]. In this paper, we have defined some stan-
dard additive and multiplicative version topological indices in Tables 1 and 2 with potential ap-
plication abilities for someMCAmolecular families to predict their physicochemical interactions.
They are namely

• Additive version the first Zagreb index (M1), second Zagreb Index (M2), the Randic index
(R),General Randic index (Rα), the Sum-connectivity index (S1), General Sum-connectivity
index (S2), the Geometric arithmetic index (GA), Atom-bond connectivity index (ABC),
Harmonic index (H), and Hyper Zagreb index (HM).

• Multiplicative version the first multiplicative Zagreb index (MM1), second multiplicative
Zagreb Index (MM2), the multiplicative Randic index (MR), multiplicative General Randic
index (MRα), themultiplicative Sum-connectivity index (MS1),multiplicativeGeneral Sum-
connectivity index (MS2), the multiplicative Geometric arithmetic index (MGA), multi-
plicative Atom-bond connectivity index (MABC), multiplicative Harmonic index (MH),
and multiplicative Hyper Zagreb index (MHM).

The defined topological indices from Tables 1 and 2, numerical descriptors derived from a
molecule’s configuration. These indices have found broad utility across various domains, encom-
passing thermodynamics, pharmaceutical exploration anddevelopment, and the analysis ofQSPR
and QSAR. Noteworthy is the substantial correlation established in research between the "atom-
bond connectivity index" and pivotal attributes such as boiling points and heats of formation for
specific groups of isomeric octanes. This underscores the profound insights that topological in-
dices can furnish regarding diverse molecular attributes [10].

2 Computational Strategies

We initiate our discussion by introducing some fundamental notations that will be employed
throughout this manuscript. Let’s envision a basic graph, denoted asG, where the nodes symbol-
ize the atoms constituting melamine cynuric acid, and the edges signify the carbon bonds linking
them. Here, the symbol dp signifies the count of atoms directly bonded to a given carbon atom,
denoted as vertex p (termed as the degree of vertex p). We define two distinct metrics for every
edge, depending on the degrees of its terminal vertices, outlined as follows [1]:

• The metric x+(e) = dp + dq signifies the sum of degrees for vertices p and q, where
e = pq ∈ E(G).

• The metric x∗(e) = dp ∗ dq denotes the product of degrees for vertices p and q, where
e = pq ∈ E(G).

Furthermore, using the defined notations and topological indices we compute the indices ex-
pressions and the numerical values using the grap theoritical method and followed by that we
compute the associated entropy values using Shannon’s strategy. A QSPR model (correlation
analysis) using the linear regression method has been conducted between the indices and the
associated entropy values to determine the goodness of fit. The indices defined in Tables 1 and

245



P. N. A. D. Renai et al. Malaysian J. Math. Sci. 19(1): 241–267(2025) 241 - 267

Table 1: Additive version of degree-based topological descriptors in QSPR analysis.

Index Definition & Formula
First Zagreb Index The sum of the squares of vertex degrees of all edges in the

graph. M1(G) =
∑

pq∈E(G)

[x+(e)]

Second Zagreb Index The sum of the product of the vertex degrees of all edges in the
graph. M2(G) =

∑
pq∈E(G)

[x∗(e)]

General Randić Index The sum of the powers of the product of vertex degrees of all
edges in the graph. Rα(G) =

∑
pq∈E(G)

[x∗(e)]α

Randić Index The sum of the reciprocal square roots of the product of vertex
degrees of all edges in the graph. R(G) =

∑
pq∈E(G)

[x∗(e)]−
1
2

Hyper Zagreb Index The sum of the squares of the squares of vertex degrees of all
edges in the graph. HM(G) =

∑
pq∈E(G)

[x+(e)]2

Sum Connectivity Index The sum of reciprocals of square roots of vertex degrees of all
edges in the graph. SCI1(G) =

∑
pq∈E(G)

1√
x+(e)

General Sum Connectiv-
ity Index

The sum of powers of vertex degrees of all edges in the graph.

χα(G) =
∑

pq∈E(G)

[x+(e)]α

Geometric Arithmetic
Index

The sum of ratios of twice the square roots of vertex degrees

to vertex degrees of all edges in the graph.
GA(G) =

∑
pq∈E(G)

2
√
x∗(e)

x+(e)

Atom Bond Connectivity
Index

The sum of square roots of the difference between vertex

degrees divided by the product of vertex degrees of all edges

in the graph. ABC(G) =
∑

pq∈E(G)

√
x+(e)− 2

x∗(e)

Harmonic Index The sum of reciprocals of vertex degrees of all edges in the
graph. H(G) =

∑
pq∈E(G)

2

x+(e)
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Table 2: Multiplicative version of degree-based topological descriptors in QSPR analysis.

Index Definition & Formula
First Zagreb Index The product of the squares of vertex degrees of all edges in the

graph. MM1(G) =
∏

pq∈E(G)

[x+(e)]

Second Zagreb Index The product of the product of the vertex degrees of all edges in
the graph. MM2(G) =

∏
pq ∈ E(G)[x∗(e)]

General Randić Index The product of the powers of the product of vertex degrees of all
edges in the graph. MRα(G) =

∏
pq∈E(G)

[x∗(e)]α

Randić Index The product of the reciprocal square roots of the product of vertex
degrees of all edges in the graph. MR(G) =

∏
pq∈E(G)

[x∗(e)]−
1
2

Hyper Zagreb Index The product of the squares of the squares of vertex degrees of
all edges in the graph. MHM(G) =

∏
pq∈E(G)

[x+(e)]2

Sum Connectivity Index The product of reciprocals of square roots of vertex degrees of
all edges in the graph. MSCI1(G) =

∏
pq∈E(G)

1√
x+(e)

General Sum Connectiv-
ity Index

The product of powers of vertex degrees of all edges in the

graph. Mχα(G) =
∏

pq∈E(G)

[x+(e)]α

Geometric Arithmetic
Index

The product of ratios of twice the square roots of vertex degrees

to vertex degrees of all edges in the graph.
MGA(G) =

∏
pq∈E(G)

2
√
x∗(e)

x+(e)

Atom Bond Connectivity
Index

The product of square roots of the difference between vertex

degrees divided by the product of vertex degrees of

all edges in the graph. MABC(G) =
∏

pq∈E(G)

√
x+(e)− 2

x∗(e)

Harmonic Index The product of reciprocals of vertex degrees of all edges in the
graph. MH(G) =

∏
pq∈E(G)

2

x+(e)
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2 are commonly used in graph theory and chemical graph theory to characterize the structural
properties of graphs and molecules.

2.1 Entropy

Figure 2: Stages of increasing entropy.

The introduction of the Graph Entropy system, as cited in [21], aimed to characterize the com-
plexity of graphs. Initially developed to represent the challenges in communication anddata trans-
mission, this system now finds extensive applications across various sectors, including engineer-
ing, biological systems, andphysical dissipative structures, among others, as referenced in [18, 24].
There exist two primary types of graph entropies: probabilistic and deterministic. This discussion
centers on probabilistic graph entropies due to their widespread use in fields such as communica-
tion and chemistry. Among probabilistic graph entropies, two approaches emerge: intrinsic and
extrinsic. Intrinsic methodologies segment the graph into sections with similar structures, assign-
ing a probability distribution to each segment. Conversely, extrinsic methodologies incorporate
additional information, like node labels or edgeweights, to define the probability distribution. For
extrinsic metrics, a probability function is allocated to graph elements like vertices or edges. Uti-
lizing an entropy function on this probability distribution function yields the calculated numerical
values for probabilistic measurements of graph complexity, as outlined in [21].

While variousmethodologies estimate probabilistic entropy, wehave chosen amethod reminis-
cent of Shannon’s prominent strategy for our computations. In information communication and
transmission, probability functions are assigned to eachunit of information as symbolsx1, x2, . . . , xn,
and Shannon’s fundamental informational entropy (h) measure is defined as:

h =

n∑
i=1

pi log(pi)

Here, pi =
Ni

N
, whereNi denotes the number of occurrences of xi in the information andN repre-

sents the total length of information, as elaborated in [24]. To elucidate a molecule’s structure, we
assign probabilities to its bonds based on topological descriptors that encapsulate the molecule’s
atom and bond arrangement. The calculated entropy is then expressed using the topological index
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Y, as described in [19, 24], in the following manner:

ENTY (G) = log(Y )− 1

Y

∑
pq∈E(G)

f(e) log f(e)

3 Graph Representation of The ThreeMCA Structures

Figure 3: Graph view of melamine cyanuric acid linear tape MCA.LTn.

Figure 4: Graph view of melamine cyanuric acid linear chain MCA.LCn.

Figure 5: Graph view of melamine cyanuric acid triangular system MCA.Tn.
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4 Computation of Degree Based Topological Indices of Melamine Cyanuric
Acid

Disjoint Edge Partitions for MCA Growth Types: This section begins by outlining the dis-
joint edge partitions for three distinct types of melamine cyanuric acid (MCA) growths, namely
MCA.LTn, MCA.LCn, and MCA.Tn. These growth types represent different structural config-
urations of MCA, each with its unique arrangement of atoms and bonds. MCA.LTn refers to
the linear tape structure of MCA, MCA.LCn denotes the hexagonal cyclic rosette structure, and
MCA.Tn represents the triangular system withinMCA. These distinctions are crucial for under-
standing the diverse molecular arrangements and properties within the MCA compound.

Computing Indices Expressions forMCA Families: By utilizing the descriptors and edge par-
titions provided in Tables 1 and 2, as well as Tables 3 to 5, we performed computations to derive
additive and multiplicative versions of index expressions. These expressions were derived based
on the formulations presented in Theorems 4.1 to 4.6, specifically tailored for the three MCA
molecular families. The additive and multiplicative indices expressions are mathematical repre-
sentations that encapsulate key structural and topological information about theMCAmolecules.
They serve as quantitative measures to characterize and compare the structural features of differ-
ent MCA growth types, aiding in the understanding of their molecular complexities and behav-
iors.

Overall, these computations and derivations enhance our understanding of the structural nu-
ances and topological characteristics inherent in various MCA growth types, contributing to a
comprehensive analysis of MCAmolecular families.

The total number of edges for MCA.LTn can be expressed as,

|E(MCA.LTn)| =
1

4
(66n+ (−1)n + 39).

ForMCA.LCn, the total number of edges is given by,
|E(MCA.LCn)| = 69n+ 30.

The total number of edges inMCA.Tn is represented as,
|E(MCA.T )| = 18n2 + 66n+ 15.

Table 3: Edge Partitions of Melamine cyanuric acid MCA.LTn.

Edge Type |Ei(MCA.LTn)|
(1,3) |E1| = 1

4 (6n+ (−1)n + 11)
(2,3) |E2| = 1

2 (2n+ (−1)n + 7)
(2,2) |E3| = 1

2 (14n+ (−1)n + 3)
(3,3) |E4| = 7n+ 2

Table 4: Edge Partitions of Melamine cyanuric acid MCA.LCn.

Edge Type |Ei(MCA.LCn)|
(1,3) |E1| = 3n+ 6
(2,3) |E2| = 32n+ 10
(2,2) |E3| = 2n+ 4
(3,3) |E4| = 32n+ 10
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Table 5: Edge Partitions of Melamine cyanuric acid MCA.Tn.

Edge Type |Ei(MCA.Tn)|
(1,3) |E1| = 3n+ 6
(2,3) |E2| = 9n2 + 27n+ 6
(2,2) |E3| = 6n
(3,3) |E4| = 9n2 + 30n+ 3

4.1 Computation of additive degree based topological indices

Theorem 4.1. LetMCA.LTn be the Melamine cyanuric acid linear tape graph with dimension n. Then,

1. M1(MCA.LTn) = 87n+3(−1)n

2
+

89

2
.

2. M2(MCA.LTn) = 118n+
5(−1)n

2
+

115

2
.

3. R(MCA.LTn) =
35n

6
+

√
3((3n)/2 + (−1)n/4 + 11/4)

3
+
(
√
6(n+ (−1)n/2 + 7/2))

6
+
(−1)n

4

+
17

12
.

4. Rα(MCA.LTn) = 6α
(
n+

(−1)n

2
+

7

2

)
+ 9α(7n+ 2) + 4α

(
7n+

(−1)n

2
+

3

2

)
+

3α
(
3n

2
+ (−1)n

4 + 11
4

)
.

5. HM(MCA.LTn) =

(
470n+ 17(−1)n +

419

2

)
.

6. SCI1(MCA.LTn) =
17n

4
+
√
5

(
n+

(−1)n

2
+

7

2

)
5

+
3(−1)n

8
+

(
√
6(7n+ 2))

6
+

17

8
.

7. χα(MCA.LTn) = 5α
(
n+

(−1)n

2
+

7

2

)
+ 6α(7n+ 2) + 4α

(
7n+

(−1)n

2
+

3

2

)
+

4α
(
3n

2
+

(−1)n

4
+

11

4

)
.

8. GA(MCA.LTn) = 8n+

√
3(6n+ (−1)n + 11)

8
+

√
6(14n+ (−1)n + 3)

5
− (−1)n

2
+

11

2
.

9. ABC(MCA.LTn) =
14n

3
+

√
2(2n+ (−1)n + 7)

4
+

√
2(14n+ (−1)n + 3)

4
+

√
6(6n+ (−1)n + 11)

12

+
4

3
.

10. H(MCA.LTn) =
179n

15
+

2(−1)n

5
+

163

15
.

Theorem 4.2. LetMCA.LCn be the Melamine cyanuric acid linear chain graph with dimension n. Then,
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1. M1(MCA.LCn) = 372n+ 150.

2. M2(MCA.LCn) = 497n+ 184.

3. R(MCA.LCn) =
35n

3
+

√
3(3n+ 6)

3
+

√
6(32n+ 10)

6
+

16

3
.

4. Rα(MCA.LCn) = 4α(2n+ 4) + 3α(3n+ 6) + 6α(32n+ 10) + 9α(32n+ 10).

5. HM(MCA.LCn) = (2032n+ 770).

6. SCI1(MCA.LCn) =
5n

2
+

√
5(32n+ 10)

5
+

√
6(32n+ 10)

6
+ 5.

7. χα(MCA.LCn) = 4α(2n+ 4) + 4α(3n+ 6) + 5α(32n+ 10) + 6α(32n+ 10).

8. GA(MCA.LCn) = 34n+

√
3(3n+ 6)

2
+

2
√
6(32n+ 10)

5
+ 14.

9. ABC(MCA.LCn) =
64n

3
+

√
2(2n+ 4)

2
+

√
2(32n+ 10)

2
+

√
2
√
3(3n+ 6)

3
+

20

3
.

10. H(MCA.LCn) =
779n

30
+

37

3
.

Theorem 4.3. Let MCA.Tn be the Melamine cyanuric acid Triangular system graph with dimension n.
Then,

1. M1(MCA.Tn) = 99n2 + 351n+ 72.

2. M2(MCA.Tn) = 135n2 + 465n+ 81.

3. R(MCA.Tn) = 13n+

√
6(9n2 + 27n+ 6)

6
+ 3n2 +

√
3(3n+ 6)

3
+ 1.

4. Rα(MCA.Tn) = 3α(3n+ 6) + 6α(9n2 + 27n+ 6) + 4α(6n) + 9α(9n2 + 30n+ 3).

5. HM(MCA.Tn) = (549n2 + 1899n+ 354).

6. SCI1(MCA.Tn) =
9n

2
+

√
5(9n2 + 27n+ 6)

5
+

√
6(9n2 + 30n+ 3)

6
+ 3.

7. χα(MCA.Tn) = 4α(3n+ 6) + 5α(9n2 + 27n+ 6) + 4α(6n) + 6α(9n2 + 30n+ 3).

8. GA(MCA.Tn) = 36n+
2
√
6(9n2 + 27n+ 6)

5
+

√
6(3n+ 6)

2
+ 3.

9. ABC(MCA.Tn) = 20n+

√
2(9n2 + 27n+ 6)

2
+ 3

√
2n+ 6n2 +

√
2
√
3(3n+ 6)

3
+ 2.

10. H(MCA.Tn) =
33n2

5
+

253n

10
+

32

5
.
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Example

1. M1(G) =
∑

pq∈E(G)

[x+(e)]

M1(MCA.LTn) =(1 + 3)(3n+ 6) + (2 + 3)(9n2 + 27n+ 6) + (2 + 2)(6n)+

(3 + 3)(9n2 + 27n+ 3)77

=99n2 + 351n+ 72.

2. M2(G) =
∑

pq∈E(G)

[x∗(e)]

M2(MCA.LTn) =(1× 3)(3n+ 6) + (2× 3)(9n2 + 27n+ 6) + (2× 2)(6n)+

(3× 3)(9n2 + 27n+ 3)

=497n+ 184.

3. Rα(G) =
∑

pq∈E(G)

[x∗(e)]α

R(MCA.LTn) =
1√
1× 3

(3n+ 6) +
1√
2× 3

(9n2 + 27n+ 6) +
1√
2× 2

(6n)+

1√
3× 2

(9n2 + 27n+ 3)

=3α(3n+ 6) + 6α(9n2 + 27n+ 6) + 4α(6n) + 9α(9n2 + 30n+ 3).

4.2 Computation of multiplicative degree based topological indices

Theorem 4.4. Let MCA.LTn be the Melamine cyanuric acid linear tape graph with dimwsion n. Then,

1. MM1(MCA.LTn) = 47n+(−1)n/2+3/2 ∗ 4(3∗n)/2+(−1)n/4+11/4 ∗ 5n+(−1)n/2+7/2 ∗ 67∗n+2.

2. MM2(MCA.LTn) = 3(3∗n)/2+(−1)n/4+11/4 ∗ 47∗n+(−1)n/2+3/2 ∗ 6n+(−1)n/2+7/2 ∗ 97∗n+2.

3. MR(MCA.LTn) = (1/18)7∗n+2 ∗ (1/12)n+(−1)n/2+7/2 ∗ (1/8)7∗n+(−1)n/2+3/2

∗ (1/6)(3∗n)/2+(−1)n/4+11/4.

4. MRα(MCA.LTn) = (1/18)7∗n+2 ∗ (1/12)n+(−1)n/2+7/2 ∗ (1/8)7∗n+(−1)n/2+3/2

∗ (1/6)(3∗n)/2+(−1)n/4+11/4.

5. MHM(MCA.LTn) = 167∗n+(−1)n/2+3/2 ∗16(3∗n)/2+(−1)n/4+11/4 ∗25n+(−1)n/2+7/2 ∗367∗n+2.

6. MSCI1(MCA.LTn) = (1/12)7∗n+2 ∗ (1/10)n+(−1)n/2+7/2

∗ (1/8)7∗n+(−1)n/2+3/2 ∗ (1/8)(3∗n)/2+(−1)n/4+11/4.

7. Mχα(MCA.LTn) = (1/12)7∗n+2 ∗ (1/10)n+(−1)n/2+7/2 ∗ (1/8)7∗n+(−1)n/2+3/2

∗ (1/8)(3∗n)/2+(−1)n/4+11/4.

8. MGA(MCA.LTn) = (
√
3/2)(3∗n)/2+(−1)n/4+11/4 ∗ ((2 ∗

√
6)/5)n+(−1)n/2+7/2.

9. MABC(MCA.LTn) = (2/3)7∗n+2 ∗ (
√
2/2)n+(−1)n/2+7/2 ∗ (

√
2/2)7∗n+(−1)n/2+3/2 ∗

((
√
2
√
3)/3)(3∗n)/2+(−1)n/4+11/4.

10. MH(MCA.LTn) = (1/3)7∗n+2 ∗ (2/5)n+(−1)n/2+7/2 ∗ (1/2)7∗n+(−1)n/2+3/2

∗ (1/2)(3∗n)/2+(−1)n/4+11/4.
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Theorem 4.5. LetMCA.LCn be the Melamine cyanuric acid linear chain graph with dimwsion n. Then,

1. MM1(MCA.LCn) = 42∗n+4 ∗ 43∗n+6 ∗ 532∗n+10 ∗ 632∗n+10.

2. MM2(MCA.LCn) = 33∗n+6 ∗ 42∗n+4 ∗ 632∗n+10 ∗ 932∗n+10.

3. MR(MCA.LCn) = (1/18)32∗n+10 ∗ (1/12)32∗n+10 ∗ (1/8)2∗n+4 ∗ (1/6)3∗n+6.

4. MRα(MCA.LCn) = (1/18)32∗n+10 ∗ (1/12)32∗n+10 ∗ (1/8)2∗n+4 ∗ (1/6)3∗n+6.

5. MHM(MCA.LCn) = 162∗n+4 ∗ 163∗n+6 ∗ 2532∗n+10 ∗ 3632∗n+10.

6. MSCI1(MCA.LCn) = (1/12)32∗n+10 ∗ (1/10)32∗n+10 ∗ (1/8)2∗n+4 ∗ (1/8)3∗n+6.

7. Mχα(MCA.LCn) = (1/12)32∗n+10 ∗ (1/10)32∗n+10 ∗ (1/8)2∗n+4 ∗ (1/8)3∗n+6.

8. MGA(MCA.LCn) = (
√
3/2)3∗n+6 ∗ ((2 ∗

√
6)/5)32∗n+10.

9. MABC(MCA.LCn) = 23∗n+6 ∗ 232∗n+10 ∗ (
√
2)2∗n+4 ∗ ((

√
2 ∗

√
7)/2)32∗n+10.

10. MH(MCA.LCn) = (1/3)32∗n+10 ∗ (2/5)32∗n+10 ∗ (1/2)2∗n+4 ∗ (1/2)3∗n+6.

Theorem 4.6. Let MCA.Tn be the Melamine cyanuric acid Triangular system graph with dimwsion n.
Then,

1. MM1(MCA.Tn) = 46∗n ∗ 43∗n+6 ∗ 59∗n2+27∗n+6 ∗ 69∗n2+30∗n+3.

2. MM2(MCA.Tn) = 33∗n+6 ∗ 46∗n ∗ 69∗n2+27∗n+6 ∗ 99∗n2+30∗n+3.

3. MR(MCA.Tn) = (1/18)9∗n
2+30∗n+3 ∗ (1/12)9∗n2+27∗n+6 ∗ (1/8)6∗n ∗ (1/6)3∗n+6.

4. MRα(MCA.Tn) = (1/18)9∗n
2+30∗n+3 ∗ (1/12)9∗n2+27∗n+6 ∗ (1/8)6∗n ∗ (1/6)3∗n+6.

5. MHM(MCA.Tn) = 166∗n ∗ 163∗n+6 ∗ 259∗n2+27∗n+6 ∗ 369∗n2+30∗n+3.

6. MSCI1(MCA.Tn) = (1/12)9∗n
2+30∗n+3 ∗ (1/10)9∗n2+27∗n+6 ∗ (1/8)6∗n ∗ (1/8)3∗n+6.

7. Mχα(MCA.Tn) = (1/12)9∗n
2+30∗n+3 ∗ (1/10)9∗n2+27∗n+6 ∗ (1/8)6∗n ∗ (1/8)3∗n+6.

8. MGA(MCA.Tn) = (2/3)9∗n
2+30∗n+3 ∗ (

√
3/2)3∗n+6 ∗ ((2 ∗

√
6)/5)9∗n

2+27∗n+6.

9. MABC(MCA.Tn) = (2/3)9∗n
2+30∗n+3∗(

√
2/2)9∗n

2+27∗n+6∗(
√
2/2)6∗n∗((

√
2∗

√
3)/3)3∗n+6.

10. MH(MCA.Tn) = (1/3)9∗n
2+30∗n+3 ∗ (2/5)9∗n2+27∗n+6 ∗ (1/2)6∗n ∗ (1/2)3∗n+6.

Example

1. M1(G) =
∏

pq∈E(G)

[x+(e)]

MM1(MCA.LTn) =(1 + 3)(3n+6) + (2 + 3)(9n
2+27n+6) + (2 + 2)(6n)+

(3 + 3)(9n
2+27n+3)

=46∗n ∗ 43∗n+6 ∗ 59∗n
2+27∗n+6 ∗ 69∗n

2+30∗n+3.
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2. M2(G) =
∏

pq∈E(G)

[x∗(e)]

MM2(MCA.LTn) =(1× 3)(3n+6) + (2× 3)(9n
2+27n+3) + (2× 2)(6n)+

(3× 3)(9n
2+27n+3)

=33∗n+6 ∗ 46∗n ∗ 69∗n
2+27∗n+6 ∗ 99∗n

2+30∗n+3.

3. Rα(G) =
∏

pq∈E(G)

[x∗(e)]α

MR(MCA.LTn) =
1√
1× 3

(3n+6)

+
1√
2× 3

(9∗n2+27∗n+6)

+
1√
2× 2

(6n)

+

1√
3× 2

(9∗n2+27∗n+3)

=(1/18)9∗n
2+30∗n+3 ∗ (1/12)9∗n

2+27∗n+6 ∗ (1/8)6∗n ∗ (1/6)3∗n+6.

5 Computer Based Strategies For Computing Degree Based Numerical
Entropy Values

This section utilizes Shannon’s entropy tomeasure the distribution of degree-based topological
descriptors, accomplishing this through the establishment of a probability function derived from
these descriptors, followed by the application of Shannon’s formula for computing the entropy
value.

In computing the entropies of melamine cyanuric acid (MCA), we employ equation 2 along
with the Hyper Zagreb index, employing this method to ascertain the entropy values associated
with the aforementioned index.

Assuming G represents the melamine cyanuric acid linear chain MCA.LCn, the process of
calculating the entropy values for both additive and multiplicative degree-based Hyper Zagreb
Indices using equation 2 is further expounded below [22].

Additive degree based entropy

ENTHM (G) = log(HM(G))− 1

HM(G)

∑
pq∈E(G)

[x+(e)]2 log[x+(e)]2.

Now by substituting the edge partitions from Tables 3 to 5 we get,
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ENTHM (G) = log(HM(G))− 1

HM(G)
[(3n+ 6)[1 + 3]2 log[1 + 3]2 + (32n+ 10)[2 + 3]2 log[2 + 3]2

+ (2n+ 4)[2 + 2]2 log[2 + 2]2 + (32n+ 10)[3 + 3]2 log[3 + 3]2.

ENTHM (G) = log(2032n+ 770)

(
989120744954581143n

140737488355328
+

1447112804618807295

562949953421312

)
(2032n+ 770)

.

Multiplicative degree based entropy

ENTHM (G) = log(HM(G))− 1

HM(G)

∏
pq∈E(G)

[x+(e)]2 log[x+(e)]2.

Now by substituting the edge partitions from Tables 3 to 5 we get,

ENTHM (G) = log(HM(G))− 1

HM(G)
[(3n+ 6)[1 + 3]2 log[1 + 3]2 ∗ (32n+ 10)[2 + 3]2 log[2 + 3]2

∗ (2n+ 4)[2 + 2]2 log[2 + 2]2 ∗ (32n+ 10)[3 + 3]2 log[3 + 3]2.

ENTHM (G) = log(2032n+ 770)− log((1/3)(9∗n
2+30∗n+3) ∗ (2/5)(9∗n

2+27∗n+6) ∗ (1/2)(6∗n)∗

(1/2)(3∗n+6))− (18729944304496077/(1/3)(9∗n
2+30∗n+3)/(2/5)(9∗n

2+27∗n+6)/

(1/2)(6∗n)/(1/2)(3∗n+6) ∗ n ∗ ((18729944304496077 ∗ n)/18014398509481984+
18729944304496077/9007199254740992)∗
((74278918775366703 ∗ n2)/22517998136852480+

(222836756326100109 ∗ n)/22517998136852480+
24759639591788901/11258999068426240)∗
((14843129681611041 ∗ n2)/4503599627370496+

(24738549469351735 ∗ n)/2251799813685248+
4947709893870347/4503599627370496))/9007199254740992.

The derivation of a general entropy expression using Shannon’s approach for the three MCA
compounds would be quite lengthy if explained as Theorems. However, concerning every topo-
logical descriptor, one can simply apply the aforementioned strategy to compute entropy.

Below, in Tables 6, 7, and 8 we have the computed different additive degree based numerical
entropy values and in Tables 9, 10, and 11 we have the computed different multiplicative degree
based numerical entropy values.

By examining Tables 6 through 11, we have compared and evaluated the performance ofmulti-
plicative and additive entropymeasures in predicting entropies. The results consistently show that
bond-additive descriptors outperformmultiplicative ones in this context. To visually demonstrate
this trend, Figures 5 and 6 display the entropy values calculated using the additive degree-based
approach.

The graphical representations provided for the three distinct MCA structures illustrate the
discussed concepts further, enhancing understanding.
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6 Additive Degree Based Numerical Entropy Values

Table 6: Additive degree based numerical entropy computation for MCA.LTn.

n EM1 EM2 ER ERα EHM ESCI1 Eχα EGA EABC EH

1 3.2442 3.3909 3.2375 3.2375 3.2545 3.2545 3.1691 3.2569 3.2558 3.5263
2 3.7493 3.8799 3.7416 3.7416 3.7580 3.7580 3.7702 3.7601 3.7590 4.0013
3 4.0659 4.1721 4.0588 4.0588 4.0744 4.0744 4.0354 4.0766 4.0755 4.2956
4 4.3199 4.4266 4.3124 4.3124 4.3278 4.3278 4.3325 4.3298 4.3287 4.5441
5 4.5110 4.6064 4.5039 4.5039 4.5189 4.5189 4.4926 4.5209 4.5199 4.7256
6 4.6809 4.7784 4.6737 4.6737 4.6885 4.6885 4.6905 4.6905 4.6894 4.8941
7 4.8179 4.9083 4.8109 4.8109 4.8255 4.8255 4.8052 4.8275 4.8265 5.0254
8 4.9457 5.0383 4.9385 4.9385 4.9531 4.9531 4.9536 4.9550 4.9540 5.1529
9 5.0524 5.1399 5.0454 5.0454 5.0598 5.0598 5.0429 5.0618 5.0608 5.2558
10 5.1548 5.2444 5.1477 5.1477 5.1621 5.1621 5.1617 5.1640 5.1629 5.3584

Table 7: Additive degree based numerical entropy computation for MCA.LCn.

n EM1 EM2 ER ERα EHM ESCI1 Eχα EGA EABC EH

1 4.5859 4.5485 4.5791 4.5791 4.5926 4.5926 4.5124 4.2671 4.9861 4.5847
2 4.5859 4.5485 4.5791 4.5791 4.5926 4.5926 4.5124 4.2671 4.9861 4.5847
3 5.4602 5.4292 5.4547 5.4547 5.4659 5.4659 5.3891 5.1384 5.9024 5.4592
4 5.7160 5.6869 5.7107 5.7107 5.7215 5.7215 5.6453 5.3936 6.1647 5.7150
5 5.9195 5.8901 5.9144 5.9144 5.9249 5.9249 5.8490 5.5968 6.3724 5.9185
6 6.0885 6.0596 6.0835 6.0835 6.0938 6.0938 6.0182 5.7656 6.5442 6.0875
7 6.2330 6.2045 6.2281 6.2281 6.2383 6.2383 6.1629 5.9099 6.6908 6.2321
8 6.3593 6.3310 6.3544 6.3544 6.3645 6.3645 6.2892 6.0361 6.8187 6.3583
9 6.4713 6.4433 6.4665 6.4665 6.4765 6.4765 6.4014 6.1481 6.9320 6.4704
10 6.5721 6.5442 6.5674 6.5674 6.5773 6.5773 6.5022 6.2488 7.0338 6.5712

Table 8: Additive degree based numerical entropy computation for MCA.Tn.

n EM1 EM2 ER ERα EHM ESCI1 Eχα EGA EABC EH

1 4.5859 4.5485 4.5791 4.5791 4.5926 4.5926 4.5670 3.9532 4.5934 4.5847
2 5.3811 5.3506 5.3760 5.3760 5.3869 5.3869 5.3593 4.5904 5.3878 5.3800
3 5.9196 5.3506 5.9155 5.9155 5.9249 5.9249 5.8997 5.0179 5.9259 5.9186
4 6.3335 6.3083 6.3299 6.3299 6.3385 6.3385 6.3148 5.3464 6.3394 6.3327
5 6.6719 6.6479 6.6686 6.6686 6.6766 6.6766 6.6540 5.6165 6.6775 6.6711
6 6.9589 6.9359 6.9559 6.9559 6.9634 6.9634 6.9461 5.8473 6.9643 6.9581
7 7.2085 7.1863 7.2057 7.2057 7.2129 7.2129 7.1918 6.0499 7.2138 7.2078
8 7.4296 7.4080 7.4270 7.4270 7.4339 7.4339 7.4133 6.2309 7.4347 7.4290
9 7.6282 7.6071 7.6257 7.6257 7.6323 7.6323 7.6122 6.3949 7.6332 7.6276
10 7.8084 7.7878 7.8061 7.8061 7.8125 7.8125 7.7928 6.5451 7.8133 7.8079
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7 Multiplicative Degree Based Numerical Entropy Values

Table 9: Multiplicative degree based numerical entropy computation for MCA.LTn.

n EM1 EM2 ER ERα EHM ESCI1 Eχα EGA EABC EH

1 0.5859 0.5485 0.5791 0.5791 0.5926 1.5926 1.5124 1.2671 1.9861 1.1847
2 0.5859 0.5485 0.5791 0.5791 1.5926 1.5926 1.5124 1.2671 2.9861 2.5847
3 0.4602 0.4292 0.4547 0.4547 0.4659 0.4659 0.3891 0.1384 0.9024 1.4592
4 0.4602 0.4292 0.4547 0.4547 0.4659 0.4659 0.3891 0.1384 0.9024 1.4592
5 77.0 135.0 178.6 236.7 280.3 338.3 382.0 440.0 483.6 541.7
6 0.0885 0.0596 0.0835 0.0835 0.0938 0.0938 0.0182 0.7656 1.5442 1.0875
7 0.0885 0.0596 0.0835 0.0835 0.0938 0.0938 0.0182 0.7656 1.5442 1.0875
8 0.3842 1.12 1.62 3.53 4.47 8.55 11.10 18.4 23.1 37.1
9 0.4713 0.4433 0.4665 0.4665 0.4765 0.4765 0.4014 2.1481 3.9320 4.4704
10 0.5721 0.5442 0.5674 0.5674 0.5773 0.5773 1.5022 2.2488 2.0338 2.5712

Table 10: Multiplicative degree based numerical entropy computation for MCA.LCn.

n EM1 EM2 ER ERα EHM ESCI1 Eχα EGA EABC EH

1 0.2442 0.3909 0.2375 0.2375 0.2545 0.2545 0.1691 0.2569 1.2558 1.5263
2 0.7493 0.8799 0.7416 0.7416 0.7580 0.7580 0.7702 0.7601 1.1590 1.0013
3 -0.0659 -0.1721 -2.0588 -2.0588 -2.0744 -3.0744 -3.0354 -3.0766 -3.0755 -3.2956
4 -0.0659 -0.1721 -2.0588 -2.0588 -2.0744 -3.0744 -3.0354 -3.0766 -3.0755 -3.2956
5 0.5110 0.6064 0.5039 0.5039 1.5189 1.5189 1.4926 1.5209 2.5199 2.7256
6 0.6809 0.7784 1.6737 1.6737 1.6885 1.6885 1.6905 1.6905 2.6894 2.8941
7 0.6809 0.7784 1.6737 1.6737 1.6885 1.6885 1.6905 1.6905 2.6894 2.8941
8 -2.9457 -2.0383 -2.9385 -3.9385 -3.9531 -4.9531 -4.9536 -4.9550 -5.9540 -5.1529
9 63.7 108.7 153.7 198.7 243.7 288.7 333.7 378.7 423.7 468.7
10 -0.1548 -0.2444 -0.1477 -0.1477 -0.1621 -0.1621 -0.1617 -0.1640 -1.1629 -1.3584

Table 11: Multiplicative degree based numerical entropy computation for MCA.Tn.

n EM1 EM2 ER ERα EHM ESCI1 Eχα EGA EABC EH

1 0.5859 0.5485 0.5791 0.5791 1.5926 1.5926 2.5670 2.9532 3.5934 3.5847
2 0.3811 0.3506 0.3760 1.3760 1.3869 2.3869 2.3593 2.5904 3.3878 3.3800
3 -0.9196 -0.3506 -0.9155 -0.9155 -0.9249 -1.9249 -1.8997 -2.0179 -2.9259 -2.9186
4 -0.9196 -0.3506 -0.9155 -0.9155 -0.9249 -1.9249 -1.8997 -2.0179 -2.9259 -2.9186
5 0.3273 0.7303 1.2558 1.9037 2.6741 3.5669 4.5821 5.7198 6.9800 8.3625
6 -0.6719 -0.6479 -0.6686 -0.6686 -0.6766 -1.6766 -1.6540 -1.6165 -1.6775 -1.6711
7 -0.6719 -0.6479 -0.6686 -0.6686 -0.6766 -1.6766 -1.6540 -1.6165 -1.6775 -1.6711
8 -19.1814 -43.8 -76.1 -116.1 -163.7 -219.0 -282.0 -352.6 -430.9 -516.9
9 -0.6282 -0.6071 -0.6257 -0.6257 -0.6323 -0.6323 -0.6122 -1.3949 -1.6332 -1.6276
10 -0.8084 -0.7878 -0.8061 -0.8061 -0.8125 -0.8125 -0.7928 -1.5451 -1.8133 -1.8079
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Figure 6: Graphical representation of numerical entropy computation for MCA.LTn andMCA.LCn.

Figure 7: Graphical representation of numerical entropy computation for MCA.Tn.
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8 Correlation Determination Between Indices and Entropy Values

This section delves into the correlation between specific topological indices, which are based
on additive degrees, and the formation of entropy. This concept finds applications across diverse
fields such as chemistry, pharmaceuticals, biodrugs, and computer science. By representing these
calculated results both visually and numerically, researchers can potentially enhance experimental
optimization and time-saving strategies. We conducted calculations for all degree-based entropies
across varying values of "n" within three distinct "MCA structures." To facilitate a deeper numeri-
cal comparison, specific Tables (6 through 8) outline additive degree-based indices alongside their
corresponding entropy formations for smaller "n" values.

Moreover, Figures 7, 8, and 9 provide a scatter plot representation and visual comparisons of
these indices and their associated entropy formations within the MCA structures. To elucidate
the relationship between variables of differing types, we employed linear regression technique
to the data. This methodology allowed us to explore the link between entropy formation and
various indices. Utilizing the linear curve fitting method, along with adjustments to underlying
parameters, we estimated the alignment between entropy and all indices. Accuracymeasures such
as standard error estimation, R2 values, and the linear regression method were leveraged, with a
particular focus onR2 to underscore significance. All simulationswere carried out usingMicrosoft
Excel, with Table 12 encapsulating goodness of fit R2 values for all indices versus entropy.

This table provides numerical evidence of the relationships under scrutiny. This information
is invaluable for researchers as it allows them to reduce laboratory work and time consumption by
predicting properties based on structural indices, thus guiding experimental design and optimiza-
tion. Overall, this strategy enables a deeper investigation into the intricate relationships between
different types of variables, such as structural indices and thermodynamic properties, facilitating
a better understanding of molecular behavior and potential parameter modifications.
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Figure 8: Line fitting between indices and entropy values for MCA.LTn.
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Figure 9: Line fitting between indices and entropy values for MCA.LCn.
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Figure 10: Line fitting between indices and entropy values for MCA.Tn.
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Table 12: Correlation coefficents ofMCA.LTn, MCA.LCn andMCA.Tn.

Index R2 Standard Error Estimation
M1 0.96585436 0.168166888
M2 0.967693977 0.168166888
R 0.9662272 0.184121987
Rα 0.9662272 0.184121987
HM 0.961439715 0.184121987
SCI1 0.966262737 0.167840131
χα 0.966262737 0.167840131
GA 0.965916641 0.16864674
ABC 0.966276259 0.167777467
H 0.968515126 0.155981442

Index R2 Standard Error Estimation
M1 0.963329321 0.182039849
M2 0.962966136 0.183730085
R 0.963273052 0.182355
Rα 0.963273052 0.182355
HM 0.963383726 0.181776362
SCI1 0.963383726 0.181776362
χα 0.963383726 0.182631626
GA 0.963212808 0.181247402
ABC 0.963495458 0.192579759
H 0.961171366 0.182082957

Index R2 Standard Error Estimation
M1 0.918223504 0.438039746
M2 0.921370304 0.453220977
R 0.919128362 0.43628526
Rα 0.919128362 0.43628526
HM 0.919164864 0.43527214
SCI1 0.919164864 0.43527214
χα 0.917874771 0.43969581
GA 0.933915731 0.317363205
ABC 0.918949448 0.435824058
H 0.919500595 0.434843906
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9 Conclusion

In conclusion, this paper presents an analytical approach for computing information-theoretic
entropy in melamine cyanuric acid (MCA) molecular tesselations. Analysis of the three MCA
structures revealed that as the n values increase, additive entropy experiences the most signif-
icant changes compared to multiplicative entropy. Notably, the Atom Bond Connectivity index
consistently delivered optimal incremental outcomes, indicating substantial alterations in disor-
der during the transition state ofMCA. Thismathematical methodology, coupledwith topological
descriptors, provides a comprehensive view of essential thermodynamic parameters, facilitating
tailored structural modifications for specific applications. The computed topological indices and
entropy metrics for different phases of 2D materials hold promise for predicting a wide range of
characteristics such as physicochemical, thermochemical, electrical, and mechanical properties.
By integrating these descriptors with quantum-chemical metrics, valuable insights into molecular
connectivity and material behavior can be gained. Our exploration highlights the effectiveness of
degree-based indices focusing on addition in establishing a correlation between entropy formation
and parameter adjustments in MCA compounds, as evidenced by positive correlation coefficients
(R2). Additionally, leveraging Shannon’s formula for probabilistic entropy measures establishes
links between MCA compound architectures and various physicochemical properties, promising
advancements in QSAR and QSPR investigations in this domain.
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